skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ding, Ling"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Graphene with in-plane nanoholes, named holey graphene, shows great potential in electrochemical applications due to its fast mass transport and improved electrochemical activity. Scalable nanomanufacturing of holey graphene is generally based on chemical etching using hydrogen peroxide to form through-the-thickness nanoholes on the basal plane of graphene. In this study, we probe into the fundamental mechanisms of nanohole formation under peroxide etching via an integrated experimental and computational effort. The research results show that the growth of nanoholes during the etching of graphene oxide is achieved by a three-stage reduction–oxidation–reduction procedure. First, it is demonstrated that vacancy defects are formed via a partial reduction-based pretreatment. Second, hydrogen peroxide reacts preferentially with the edge-sites of defect areas on graphene oxide sheets, leading to the formation of various oxygen-containing functional groups. Third, the carbon atoms around the defects are removed along with the neighboring carbon atoms via reduction. By advancing the understanding of process mechanisms, we further demonstrate an improved nanomanufacturing strategy, in which graphene oxide with a high density of defects is introduced for peroxide etching, leading to enhanced nanohole formation. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. ABSTRACT Radiocarbon ( 14 C) in dissolved inorganic carbon (DIC) was measured for water samples collected from six deep stations in the Kuroshio Extension (KE) region in the northwestern North Pacific in April–May 2015. Vertical profiles of Δ 14 C-DIC indicate that bomb-produced 14 C was present from the surface to ~1500 m water depth. Large variations in Δ 14 C-DIC values (300‰) were observed at 500 m water depth among the stations and the differences were likely controlled by transport and mixing dynamics of different water masses in the region. The major Pacific western boundary currents, such as Kuroshio and Oyashio and regional mesoscale eddies, could play important roles affecting the observed Δ 14 C-DIC variability. The depth profiles of both Δ 14 C-DIC and DIC concentrations can be predicted by the solution mixing model and can be used as conservative tracers of water mass movement and water parcel homogenization in the ocean. 
    more » « less